浙江專升本高等數學考試大綱及備考方法,高等數學總分為150分,整體難度中低為主,要想在升本考試中取得高分數,要注意升本復習中這幾個維度:
打牢基礎
根據《高等數學》考試大綱的要求,同學們需要掌握“高等數學”中函數、極限和連續、一元函數微分學、一元函數積分學、無窮級數、常微分方程、向量代數與空間解析幾何的基本概念、基本理論和基本方法。
所以在備考的過程中,打基礎是同學們必須要重視起來的,要完全理解并記住考試大綱中涉及的每個概念、公式、定理等并熟練運用。
提高計算能力
數學越來越考察同學們的計算能力,在平時的備考中,一定要認真演算每一個題目,把每一個題目計算準確并把握好時間。
提高綜合能力
試卷的第四大題是綜合題,共有三個小題,每小題10分,該題共30分,綜合題占據了整張試卷1/5的分值,要想取得好的成績綜合題的得分率也不能低。
綜合題考察的是多個章節不同知識點的融合,所以吃透每個單獨知識點后要思考不同知識點之間的聯系。每一章學完后可以自己總結思維導圖,分析知識點與知識點之間的關聯,提高綜合能力。
歷年真題非常重要
每年的考試中,都會發現和以前考過的題目有相似之處,一定要吃透歷年真題面對最后的大考才能心中有所把握。
2023年浙江專升本高等數學考試大綱
一、函數、極限和連續
(一)函數
1.理解函數的概念,會求函數的定義域、表達式及函數值,會作出一些簡單的分段函數圖像。
2.掌握函數的單調性、奇偶性、有界性和周期性。
3.理解函數y =?(x)與其反函數y =?-1(x)之間的關系(定義域、值域、圖像),會求單調函數的反函數。
4.掌握函數的四則運算與復合運算; 掌握復合函數的復合過程。
5.掌握基本初等函數的性質及其圖像。
6.理解初等函數的概念。
7.會建立一些簡單實際問題的函數關系式。
(二)極限
1.理解極限的概念(只要求極限的描述性定義),能根據極限概念描述函數的變化趨勢。理解函數在一點處極限存在的充分必要條件,會求函數在一點處的左極限與右極限。
2.理解極限的唯一性、有界性和保號性,掌握極限的四則運算法則。
3.理解無窮小量、無窮大量的概念,掌握無窮小量的性質,無窮小量與無窮大量的關系。會比較無窮小量的階(高階、低階、同階和等價)。會運用等價無窮小量替換求極限。
4.理解極限存在的兩個收斂準則(夾逼準則與單調有界準則),掌握兩個重要極限:
并能用這兩個重要極限求函數的極限。
(三)連續
1.理解函數在一點處連續的概念,函數在一點處連續與函數在該點處極限存在的關系。會判斷分段函數在分段點的連續性。
2.理解函數在一點處間斷的概念,會求函數的間斷點,并會判斷間斷點的類型。
3.理解“一切初等函數在其定義區間上都是連續的”,并會利用初等函數的連續性求函數的極限。
4.掌握閉區間上連續函數的性質:最值定理(有界性定理),介值定理(零點存在定理)。會運用介值定理推證一些簡單命題。
二、一元函數微分學
(一)導數與微分
1.理解導數的概念及其幾何意義,了解左導數與右導數的定義,理解函數的可導性與連續性的關系,會用定義求函數在一點處的導數。
2.會求曲線上一點處的切線方程與法線方程。
3.熟記導數的基本公式,會運用函數的四則運算求導法則,復合函數求導法則和反函數求導法則求導數。會求分段函數的導數。
4.會求隱函數的導數。掌握對數求導法與參數方程求導法。
5.理解高階導數的概念,會求一些簡單的函數的n階導數。
6.理解函數微分的概念,掌握微分運算法則與一階微分形式不變性,理解可微與可導的關系,會求函數的一階微分。
(二)中值定理及導數的應用
1.理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明一些簡單的不等式。
2.掌握洛必達(L’Hospital)法則,會用洛必達法則求“,
,,
,
,
,
,
”型未定式的極限。
3.會利用導數判定函數的單調性,會求函數的單調區間,會利用函數的單調性證明一些簡單的不等式。
4.理解函數極值的概念,會求函數的極值和最值,會解決一些簡單的應用問題。
5.會判定曲線的凹凸性,會求曲線的拐點。
6.會求曲線的漸近線(水平漸近線、垂直漸近線和斜漸近線)。
7.會描繪一些簡單的函數的圖形。
三、一元函數積分學
(一)不定積分
1.理解原函數與不定積分的概念及其關系,理解原函數存在定理,掌握不定積分的性質。
2.熟記基本不定積分公式。
3.掌握不定積分的第一類換元法(“湊”微分法),第二類換元法(限于三角換元與一些簡單的根式換元)。
4.掌握不定積分的分部積分法。
5.會求一些簡單的有理函數的不定積分。
(二)定積分
1.理解定積分的概念與幾何意義, 掌握定積分的基本性質。
2.理解變限積分函數的概念,掌握變限積分函數求導的方法。
3.掌握牛頓—萊布尼茨(Newton—Leibniz)公式。
4.掌握定積分的換元積分法與分部積分法。
5.理解無窮區間上有界函數的廣義積分與有限區間上無界函數的瑕積分的概念,掌握其計算方法。
6.會用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉一周所得的旋轉體的體積。
四、無窮級數
(一)數項級數
1.理解級數收斂、級數發散的概念和級數的基本性質,掌握級數收斂的必要條件。
2.熟記幾何級數,調和級數
和p—級數
的斂散性。會用正項級數的比較審斂法與比值審斂法判別正項級數的斂散性。
3.理解任意項級數絕對收斂與條件收斂的概念。會用萊布尼茨(Leibnitz) 判別法判別交錯級數的斂散性。
(二)冪級數
1.理解冪級數、冪級數收斂及和函數的概念。會求冪級數的收斂半徑與收斂區間。
2.掌握冪級數和、差、積的運算。
3.掌握冪級數在其收斂區間內的基本性質:和函數是連續的、和函數可逐項求導及和函數可逐項積分。
4.熟記ex,sinx,cosx,ln(1+x),的麥克勞林(Maclaurin)級數,會將一些簡單的初等函數展開為x-x0的冪級數。
五、常微分方程
(一)一階常微分方程
1.理解常微分方程的概念,理解常微分方程的階、解、通解、初始條件和特解的概念。
2.掌握可分離變量微分方程與齊次方程的解法。
3.會求解一階線性微分方程。
(二)二階常系數線性微分方程
1.理解二階常系數線性微分方程解的結構。
2.會求解二階常系數齊次線性微分方程。
3.會求解二階常系數非齊次線性微分方程(非齊次項限定為(Ⅰ) f(x),其中
為x的n次多項式,
為實常數;(Ⅱ)
,其中
,w為實常數,
,
分別為x的n次,m次多項式)。
六、向量代數與空間解析幾何
(一)向量代數
1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。
2.掌握向量的線性運算(加法運算與數量乘法運算),會求向量的數量積與向量積。
3.會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。
(二)平面與直線
1.會求平面的點法式方程與一般式方程。會判定兩個平面的位置關系。
2.會求點到平面的距離。
3.會求直線的點向式方程、一般式方程和參數式方程。會判定兩條直線的位置關系。
4.會求點到直線的距離,兩條異面直線之間的距離。
5.會判定直線與平面的位置關系。
浙江院校專業不知道怎么選?報名報考問題不知道怎么解答?落榜沒考上怎么辦?【浙江專升本學歷提升指導中心】的專業老師為你解答!
各位考生可可以和【浙江專升本考生交流群】里面的老師開展一對一交流,幫助考生攻克基礎知識薄弱、攻堅考試重點難點等困難,得到專屬于自己的解答。敬請關注我們吧!
以上就是關于“2023年浙江專升本高等數學考試大綱及備考方法”的全部內容,考生如果想獲得更多關于常見問題、相關資訊,如考試動態、招生簡章、統考動態、浙江專升本院校、歷年真題、考試大綱、專升本等相關信息,敬請關注浙江專升本網(www.52txw.cn)

浙江專升本聲明
(一)由于考試政策等各方面情況的不斷調整與變化,本網站所提供的考試信息僅供參考,請以權威部門公布的正式信息為準。
(二)本網站在文章內容來源出處標注為其他平臺的稿件均為轉載稿,免費轉載出于非商業性學習目的,版權歸原作者所有。如您對內容、版權等問題存在異議請于我們聯系,我們會及時處理。
文章來源于網絡,如有侵權,請聯系刪除